
Confidential and proprietary

Vennsa Technologies, Inc. © 2011

Vennsa OnPoint™

Beyond Debug

© 2010 Vennsa Technologies, Confidential and proprietary

Vennsa Technologies

• First EDA Company Dedicated to Debug Automation

– Spin-off from University of Toronto (2004)‏, Incorporated 2006

– World leaders in debugging

• 15+ years research, 50+ publications (IEEE, ACM)

• 5 pending patents

• Funding

– Funded by private investors and special investments from the
governments of Ontario and Canada (OCE, NRC, SRED)

• Team

– Management: Dr. Veneris, Dr. Safarpour, Lavi Lev (ex Cadence VP)‏

– Advisors: Experienced EDA and semiconductor executives

– Sales and Support: EDA veterans in US and Japan: 50+ years

– Technical: 10+ engineers

© 2010 Vennsa Technologies, Confidential and proprietary

Debug Without OnPoint

• How is debugging done today?

– Trace signals through waveform viewers and source code viewers

– Navigation, exploration tools

• Debugging tools and environments help

– Verdi, Debussy : dedicated debug/navigation tools

– Questa, Incisive, DVE : have built-in debug features

– JasperGold, 0-in, Magellan, IFV : helpful debug features for formal

• OnPoint‏is‏a‏drastically‏different‏breed‏of‏tool.‏Let’s‏see‏how...

© 2010 Vennsa Technologies, Confidential and proprietary

Step 2: Decide which path is most

likely to have bug/problem and

trace it back

Note: remember the other path in

case first path is not fruitful

Debug Without OnPoint

• With traditional debugging you need to trace

signals based on values:

assertion:
abc |=> xyz

always@(...)
 abc <= ...

assign xyz = (a | b | c) & d; always@(...)
 case(e)

 A: a <= f

 B: a <= g

always@(...)
 if (h) ...

 else if (i)

 b <= j & k &

assign c =

always@(...)
 if (bad_cond) ...

 else if (no_good)

 ...
 state <= COMPUTE

0 0 0 1

Eventually find the bug.

Note: must ensure that fix

will‏not‏“break”‏other‏

assertions & assumptions.

Remember

for later

Continue to trace back

“interesting”‏signals‏until‏bug‏

source is found...

Otherwise must go back to a

skipped path to trace.

Remember

for later

Remember

for later

1

Assertion fails:

• Two ways to fix it

 1. abc should be 0

 2. xyz should be 1

Step 1: Find the drivers of abc

and xyz.

Step 3: Identify which driver

signals to trace and figure out

when the values propagate to

the assertion.

Note: use features such as

annotated values in source

code + sensitivity or controlling

signals:‏“why?”‏

© 2010 Vennsa Technologies, Confidential and proprietary

Debug Without OnPoint

• In other words, a tree of source code must be

analyzed during debug

?

?

?

? ?

?

? ?

? ?

? ?

?
?

?

?

?

? ?

?

? ? ?

Bug
Failure

© 2010 Vennsa Technologies, Confidential and proprietary

Debug With OnPoint

• OnPoint does the analysis and identifies which RTL

lines of code can fix the problem without any tracing

Suspect

Suspect

Suspect Bug
Failure

© 2010 Vennsa Technologies, Confidential and proprietary

Debug Pain: Root cause analysis

• Root cause analysis is manual and time consuming

• OnPoint automates most of the tedious debugging tasks

Look at

waveform

Find suspicious

lines in code

Find the

drivers

Backtrace

signals

Look at

failure

Back to

source code

Repeat,

repeat,

repeat...

In-depth code

analysis

Make

correction
Failure

occurs

OnPoint

In-depth code

analysis

Make

correction

Failure

occurs
Run OnPoint

Save hours/days per bug

Weeks/Months in design

© 2010 Vennsa Technologies, Confidential and proprietary

Hidden Problem in debug

• OnPoint output all candidate bugs as suspect

• User can see all and judge which is the bug to be fixed

Suspect

Suspect

Suspect
Failure

© 2010 Vennsa Technologies, Confidential and proprietary

Vennsa OnPoint

Design Files

(RTL , Assertions,
Checkers)

Verification Tool

(Simulation or Formal)

OnPoint

Ranked Suspects

Correct
Waveforms

Pinpoint Source

Failure Occurs:
Assertion,

Simulation Mismatch

© 2010 Vennsa Technologies, Confidential and proprietary

Vennsa OnPoint

• OnPoint Diagnoses every failure automatically

– Suspects are returned to user

• Suspects provide insight into failures

– Providing powerful Signatures

– More information than error messages

• Suspects are used for root cause analysis

– RTL constructs: statements, expressions, signals, etc.

– Locations where design can change to fix bug

– Suspects include time and fix value

© 2010 Vennsa Technologies, Confidential and proprietary

Example: OnPoint suspects

Suspect in source

Suspect with

connectivity

information

Ranked

Suspects

Suspect time

information

Suspect fix hint

© 2010 Vennsa Technologies, Confidential and proprietary

Advantage of OnPoint

• Reduce total debug time

– 30%~50% reduction of debugging time

• Enable to fix the bug which should be fixed

actually

© 2010 Vennsa Technologies, Confidential and proprietary

Start Filter Function

• Find the most start point of root cause suspect

– Can check forward, not backward

– top down analysis --- debug effectively

• Good for system-level debugging

– reduce debugging process

– easy to find the bug which should be fixed actually

 in the system level view

© 2010 Vennsa Technologies, Confidential and proprietary

Start Filter Function

© 2010 Vennsa Technologies, Confidential and proprietary

Start Filter Function

© 2010 Vennsa Technologies, Confidential and proprietary

Debug Scopes

High level debug: DV engineers

 - find general bug area

 - identify best engineer to look at it

Mid level debug: DV & Design engineers

 - understand cause of bug

 - find proximity of source

Low level debug: Design engineers

 - understand exact source of bug

 - determine how to make the fix

Scope

Time

© 2010 Vennsa Technologies, Confidential and proprietary

Debug Pain: Triage

 Error: checker CHK42 failed

 Error: checker CHK63 failed
 Error: checker CHK42 failed

 Error: assertion A23 failed
 Error: monitor Mon1 failed
 Error: assertion A24 failed

 Error: checker CHK42 failed
…

?
• Which ones are related, which are not?

• Same failures/same reasons? How many?
• Which‏ones‏to‏“file”‏as‏a‏bug?‏To‏who?‏

• What’s‏the‏source:‏design,‏testbench,‏env?

Nightly

Regression tests

Not my problem

Not mine
Yours

Designer: Joe DV: Bob Designer: Tim

… …
Yours

Probably

yours

Takes time &

Wastes time

© 2010 Vennsa Technologies, Confidential and proprietary

Binning example

• Two different bug sources, one error point

• Two different error points, same bug source

Bin1 Bin 2

Error 1 Error 1

Bin 1

Error 2

Error 1

Bin1

© 2010 Vennsa Technologies, Confidential and proprietary

Triage with OnPoint

 Error: checker CHK42 failed

 Error: checker CHK63 failed
 Error: checker CHK42 failed

 Error: assertion A23 failed
 Error: monitor Mon1 failed
 Error: assertion A24 failed

 Error: checker CHK42 failed
…

Nightly

Regression tests

Designer: Joe

DV: Bob

Designer: Tim

OnPoint

…

Bin1

Bin 2

Bin N

Binning based on
• RTL problem

• modules, registers, RTL lines, etc.

• Similar sources (irrespective of failure point)

• Testbench checker problem

• Testbench stimulus problem

Signatures

© 2010 Vennsa Technologies, Confidential and proprietary

Verification and Debug Flow

Simulation

Re-simulation w/

partial FSDB dump

OnPoint diagnosis

Suspects

ERROR

FSDB, VCD, etc.

Signatures

Bin similar

root causes

Engineer

Triage

Best Candidate

for Analysis

© 2010 Vennsa Technologies, Confidential and proprietary

OnPoint Applications

RTL Debug

Root cause analysis of

RTL designs

Netlist Debug

Root cause analysis of

gate level netlists

Formal Verification

Debug of formal

counter examples

Failure Triage
Binning of failures

based on root cause

X Propagation

Find source of X in RTL
or netlist designs

Assertion Debug
Root cause analysis of

assertion failures

OnPoint accelerates debug in the following application domains.

OnPoint

© 2010 Vennsa Technologies, Confidential and proprietary

Support Plan

• Integration with current debugger tool

– Verdi --- supported

– other debugger tools

• I/F with system level language

– Bluespec --- supported soon

– other system level language developed by EDA vendors

• Integration with IP

– design IP, verification IP, checker

• Integration with specific verification environment

– integration with scoreboard

• Ｓｕｐｅｃｔｓ ｉｎ Ｔｅｓｔｂｅｎｃｈ

© 2010 Vennsa Technologies, Confidential and proprietary

Integration with Verdi

© 2010 Vennsa Technologies, Confidential and proprietary

I/F with Bluespec

© 2010 Vennsa Technologies, Confidential and proprietary

Vennsa Technologies

Thank you

For more information and evaluation license contact:

info@vennsa.com

America

San Jose, CA

408-400-3708

Headquarters

Toronto, ON

416-829-0091

mailto:info@vennsa.com

© 2010 Vennsa Technologies, Confidential and proprietary

Example: OnPoint suspects

Suspect in source

Suspect with

connectivity

information

Ranked

Suspects

Suspect time

information

Suspect fix hint

© 2010 Vennsa Technologies, Confidential and proprietary

Example: Fix values for suspect

Fix waveforms

Fix times

© 2010 Vennsa Technologies, Confidential and proprietary

Comparison with Verdi

• In‏Verdi‏there‏are‏“advanced”‏debug‏features

• Can‏do‏“Behavioral‏Analysis”‏and‏select‏“Trace‏this‏Value”

• Will show in the temporal view where the value is assigned

© 2010 Vennsa Technologies, Confidential and proprietary

Comparison with Verdi

• Verdi simply traces the value back as far as it can

• Based on value propagation

• Verdi‏cannot‏reason‏about‏“how‏to‏fix‏bug”‏and‏cannot‏trace‏differences‏in‏

values and across functions

• OnPoint, in comparison, can determine the paths that can fix the failure

• For example, changing the select line of a mux to pick from another input

• This bug would be missed by Verdi, but found with OnPoint automatically

Bug

